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Abstract--The equations for free convection in gas are analyzed and the computational algorithm, efficient 
when the condition #gh/RT << 1 is met at an arbitrary (not small) temperature drop, is proposed. Free 
convection arising in a steady nonuniform heating of walls is calculated for axisymmetric objects of various 

shapes. The calculated results demonstrate the establishment of steady and periodic gas flows. 

1. INTRODUCTION 

A standard approximation in studying convection is 
the Boussinesq approximation [1-4] with which den- 
sity variations are assumed to be so small that the 
condition 6p/p << 1 is met, i.e. the medium is, in effect, 
taken to be incompressible. This is a good approxi- 
mation for liquids, whereas, for gases, it imposes a 
substantial limitation on the temperature drop that 
should also satisfy the relation 6T/T << 1. At an arbi- 
trary temperature drop, density variations are not 
small and in this sense the gas medium cannot be 
regarded as incompressible. Yet, the solution of the 
complete system of gasdynamic equations, including 
that describing also the propagation of sound waves, 
is impossible because typical velocities in convection 
are smaller than the; sound velocity by orders of mag- 
nitude, and the temporal step of numerical schemes is 
restricted by the most rapid process that this scheme 
accounts for. 

Simple evaluations reveal that, at low velocities 
of motion, pressure in the system is nearly invari- 
able spatially and can be presented as 
p(x, t) = po(t) +/~(x, 0, where po(t) is the spatially- 
constant quantity clependent on time owing to the 
total heating or cooling of the system and p(x, t) is 
small, This small correction to pressure can be taken 
into account in the motion equation only, whereas a 
local gas pressure is defined by the quantity po(t) and 
by the local temperature with the aid of the equation 
of state. The condition of compatibility of the motion 
and continuity equations allows a formulation of the 
equation for/~(x, t). The elliptic character of this equa- 
tion indicates that there are no sound waves in the gas 
medium thus descriibed, which precludes the above- 
mentioned difficulties associated with the choice of the 
temporal step. Essentially, the proposed method is an 

t The study was financed by the Foundation of Fun- 
damental Researches of the Republic of Belarus. 

extension to gas media of the familiar MAC method 
[5] widely applied for calculating the motion of incom- 
pressible liquids. 

Section 2 of the present article reports the analysis 
of the equations for convective motion of the gas at 
arbitrary temperature drops, Section 3 outlines the 
numerical scheme and Section 4 gives the calculated 
results. 

2. EQUATIONS OF CONVECTION IN THE GAS 
MEDIUM 

The gas convection is described by gas dynamic 
equations with regard to viscosity and thermal con- 
ductivity [1] : 

Dp 
- -  = - p  div (v) (1) 
Dt 

Dv 
p - ~  = p g - V p + Q  (2) 

D T  Dp 
pCp-~ = f l T ~  +div(xVT)+~ (3) 

where p is the gas density, v is the gas velocity, T is 
the temperature, 9 is the acceleration due to gravity, 
x is the thermal conductivity, Cp is the specific heat 
and fl = -((~p/OT)p/p is the thermal expansion. The 
gas pressure p is found from p and T using the equa- 
tion of state 

p = p(p, T). (4) 

The terms related to viscosity are defined by the fol- 
lowing expressions [2] 

for1 ~vk 2 OVm\ ~Vl 
= r / ~ x  k + ~ --g6,k ~--'~m) ff~Xk (6) 

where r/is the viscosity, and the repetitive subscripts 
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c sound velocity 
cp specific heat 
g acceleration due to 

gravity 
p pressure 
R universal gas constant 
9t Rayleigh number 
t time 
T temperature 
v velocity 

NOMENCLATURE 

x coordinate. 

Greek symbols 
fl thermal expansion 
q viscosity 
x thermal conductivity 
# atomic weight 
v kinematic viscosity 
p density 
Z thermal diffusivity. 

k, 1 and m imply summation. The system of equations 
is closed by the boundary conditions 

/)ilattheboundary ~ 0 

T[attheboundary = T(t). (7) 

With the aim to simplify the initial equations, simple 
estimations will be made assuming that convection 
proceeds in a gas medium. Provided Ap is the charac- 
teristic density variation due to heating, while rising 
to a height h, the heated gas acquires the velocity of 
the order of v ~ x / (ghAp/p)  owing to the buoyancy. 
In fact, by virtue of the effects of viscosity and cold gas 
indraft that retard the motion, the above-mentioned 
velocity can be appreciably lower, but this justifies our 
estimations even to a greater extent. With a fulfillment 
of the condition 

#gh 
e = ~-~ << 1 (8) 

this velocity appears to be much lower than the sound 
velocity c ~ x/(RT/#). In the above equations, p is the 
atomic weight and R is the universal gas constant. 
Under the same conditions, the hydrostatic pressure 
Ph ~ pgh and the dynamic pressure Pd ~ PV z prove to 
be much lower than the total pressure 

Pd ~< Ph << P. (9) 

Thus, tO a high degree of accuracy, pressure is equal 
to 

p(x, t) = po(t) +/~(x, t). (10) 

Herep << Po and a time dependence of p0 is determined 
by the total heating of the gas. Since condition (8) in 

t In equation (12) we carried out the substitution 

20vl 
1~ ~ t3+ P ° g ' x - q  3 ~xl 

where P0 is the volume-average gas density that is, evidently, 
independent of time. Such substitution somewhat simplifies 
the equation form. Furthermore, the very possibility of arbi- 
trary redefinition, via such substitution, of a diagonal part 
of the viscous stress tensor implies that, with the approxi- 
mations made, the second viscosity coefficient [2], of which 
no account was taken in the equation, entirely drops out of 
the solution. 

laboratory conditions is fulfilled with good assurance, 
the initial equations can be simplified by retaining the 
correction to pressure in motion equation (2) alone. 
With the same accuracy, the energy dissipation due 
to viscosity in heat conduction equation (3) can be 
disregarded. The indicated manipulations result in 

Dp 
-- pdiv (v), ( l l )  

Dt 

Dv 
P ~  = ( p - p o ) g - V P + Q  (12) 

ei = ~Xk?](~Xk ~- OXi/] (13) 

D T  do ,  
p C p ~  = f l T ~ t  +div  (xVT) (14) 

po(t) = p(p, T) (15) 

where P0 is the volume-average gas density?. 
The rearrangements performed have far reaching 

effects. Primarily, it is seen from equation (4) that the 
gas density is unambiguously determined by tem- 
perature and by the equation of state of the gas, P0 
being defined here by the law of mass conservation in 
the volume 

M = fpdV. (16) 

The correction to the pressure p does not enter into 
the equation of state and should be ascertained from 
other considerations. Namely, by calculating the 
divergence from equation (12) we can obtain an ellip- 
tic equation for ~6. The method for solving these equa- 
tions will be examined in more detail later, now we 
will point out only the most important consequence 
of the performed approximations, namely sound 
waves do not propagate in the medium described by 
equations (11)-(15). Since v << c, this has no physical 
meaning whatsoever but plays a prominent role from 
the viewpoint of applying numerical methods. 

With small temperature drops, T' = T--  To << T, 
further simpli]ications of the system of equations are 
possible. In this case, P - P o  = - p o f l T '  <<Po. Dis- 
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carding the density variation in heating everywhere 
except the buoyancy term, setting x and t / to  be con- 
stant over the volume, and omitting the index at P0, 
we obtain the system of equations 

V 'v  = 0, (17) 

Dv 
-. - V ~- + v A v - f l y T '  (18) 

Dt p 

DT '  
Dt = ~AT' (19) 

where v = rl/p is the kinematic viscosity and ~ = x/pCp 
is the thermal di~asivity. The convection equations 
of the form (17)-(19) are known as the Boussinesq 
approximation [1--4] and are used extensively for ana- 
lyzing convection in liquids. A qualitative analysis of 
equations (17)-(191 ) shows [2, 6] that the flow charac- 
ter is defined in this case by the Rayleigh number 

~1t - gilT'h3 (20) 
vz 

where h is the characteristic volume dimension. 

3. NUMERICAL METHOD OF SOLVING 
EQUATIONS 

The applied numerical methods are essentially 
different for incorapressible liquids and for gases. 
Although there are plenty of various methods for solv- 
ing gasdynamic equations (1)-(4), they are identical 
in essence. Should all flow characteristics at a certain 
time instant t be known, then, after the forces acting 
on each element of the medium being computed with 
the aid of equation of state (4), the flow characteristics 
at the time instant t + A t  can be obtained. All these 
methods involve a restriction on the temporal step 
referred to as the Courant criterion [5] 

Ax 
At < (21) 

C + V  

where Ax is the diimension of spatial cells and c is 
the sound velocity. As applied to the problems of 
convection in gas media, this criterion is very stringent 
because characteristic velocities, observable in con- 
vection, are lower than the sound velocity by orders 
of magnitude. 

For  predicting the liquid motion, the MAC method 
[5, 9] is known, using which pressure can be eliminated 
from the system of equations (17)-(19). The essence 
of this method is the following : if it is supposed that 
pressure at all flow points at the time instant t is 
known, then, in much the same manner as it is done 
for gas media, we can compute the liquid velocities at 
the time instant t + At with the aid of equation (18). 
Be it now required that these velocities comply with 
continuity equation (17), an elliptic closed equation 
for pressure will be derived. Having solved this equa- 
tion we can actually find velocities at the time instant 
t + A t .  As it turns out [5, 9], the sound velocity drops 

out of the criterion for the temporal step for this 
method, equation (21), which is a consequence of 
the above-stated absence of sound waves from the 
solution to equations (11)-(15) and (17)-(19). The 
present study generalizes this method for calculating 
slow (v << c) axisymmetric flows of  a compressible 
gas with allowance for thermal conductivity, viscosity, 
and gravity force that are described by equations (1 I ) -  
(15). A similar method for plane flows is delineated in 
refs. [7, 8]. 

If we know all gas parameters at the time instant t", 
the parameters at the time instant t "+1 = t"+At  are 
calculated in two stages. First, T "+1 is computed 
throughout the volume using the solution for the heat 
conduction equation 

pn . ..~_ V n . V Tn + I 
At 

= fl"T" + div(x"VT ~÷'). (22) 

Should we restrict ourselves to the equation of state 
of the ideal gas 

p R T  
p - (23) 

# 

then 

Hence 

M R { ( d V ~  -1 
po(t) = - 7  \ . IdTJ " 

(24) 

dp0 y - I f  dt M p d i v ( x V T )  d V  (25) 

where ? = cp/Cv is the adiabatic exponent. Having thus 
determined temperature and density at a new tem- 
poral stratum, we compute velocity. Let us write con- 
tinuity equation (10) by the implicit scheme 

p,,+~ _ p .  
A ~  - - div (p"+ iv"+ 1) (26) 

and motion equation (12), by the explicit scheme 

p,,+ iv,,+ l _pnv~ 
At - ( p " - p o ) g - v ` 6 + Q " - S "  (27) 

where S = (V" v")p"vL The condition of compatibility 
of the two equations yields the equation for the 
unknown .6 

pn+lAt 2-p" (p~r'/" "v" ) A`6 +d iv  \ A t  + P " g + Q " - S " , '  (28) 

If  we resort once more to equation (27), it is possible 
to impart a more symmetrical form to the pressure 
equation 

p,+ l _ 2p, + p,-1 
A`6 - + div (P"9 + Q" - S"). (29) 

At 2 

Having solved equation (28) we can find the velocities 



2692 I. M. KOZLOV e t  al. 

Fig. 1. Stationary temperature distribution: (a) 301 K, (b) 323 K, (c) 346 K, (d) 368 K, (e) 390 K, (t) 413 
K, (g) 435 K, (h) 457 K, (i) 480 K, (j) 502 K, (k) 524 K, (l) 546 K and (m) 569 K. 
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Fig. 2. Stationary velocity field (a maximal velocity is 0.1 m s-1). 

on a new temporal stratum using equation (27), which 
completes calculations at one temporal step. 

Equations (22), (27) and (28) are quantized with 
respect to spatial variables with the help of a spaced 
grid with rectangular meshes [9]. The resulting five- 
point equations for pressure and temperature are 
solved using the %-f l "  iteration algorithm [10]. 

4. CALCULATED RESULTS 

By the outlined algorithm, calculations of con- 
vection in argon were carried out that attested to a 
high efficiency of the algorithm. For  calculations use 

f I ! f I I ! I I 

was made of the equation of state of the ideal gas, 
as well as the viscosity and the thermal conductivity 
coefficients that are proportional to x/T. Absolute 
values of the coefficients were taken in conformity 
with ref. [11]. 

Consider convection in argon located in a cylin- 
drical plane volume of  radius 10 cm and height 1 
cm. The initial pressure of argon is 0.06 MPa and 
temperature, 290 K. The volume bottom is held at a 
temperature of 580 K, and, at the volume walls, a 
linear distribution of temperature ranging from 580 
to 290 K is maintained. An initially stationary gas 
begins to move as it gets heated : first, a vortex forms 
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Fig. 3. Time dependence of pressure in the volume. 
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Fig. 4. Time dependence of kinetic energy in the volume. 
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near the wall along which the heated gas rises. The 
motion upsets an unsteady equilibrium, and nine more 
vortexes form one by one. After a lapse of  time the 
motion becomes steady. Figures 1 and 2 demonstrate 
stationary temperature distributions and velocity 

fields. A similar flow, observed experimentally in sili- 
cone oil, is described in ref. [12]. 

The second calculation was performed for a volume 
made up of  two cylinders of  radii 0.5 cm and 1 cm 
and heights 2 and 1 cm, respectively. A thin cylinder 

Fig. 5. Temperature and velocity fields at the time instant 
t = 3 s: (a) 301 K, (b) 323 K, (c) 346 K, (d) 368 K, (e) 390 
K, (f) 413 K, (g) 435 K, (h) 457 K, (i) 480 K, (j) 502 K, (k) 

524 K, (1) 546 K and (m) 569 K. 

Fig. 6. Temperature and velocity fields at the time instant 
t = 3.3 s: (a) 301 K, (b) 323 K, (c) 346 K, (d) 368 K, (e) 390 
K, (f) 413 K, (g) 435 K, (h) 457 K, (i) 480 K, (j) 502 K, (k) 

524 K, (1) 546 K and (m) 569 K. 
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~t 

Fig. 7. Temperature and velocity fields at the time instant 
t = 3.6 s : (a) 301 K, (b) 323 K, (c) 346 K, (d) 368 K, (e) 390 
K, (f) 413 K, (g) 435 K, (h) 457 K, (i) 480 K, (j) 502 K, (k) 

524 K, (1) 546 K and (in) 569 K. 
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Fig. 8. Temperature and velocity fields at the time instant 
t = 3.8 s: (a) 301 K, (b) 323 K, (c) 346 K, (d) 368 K, (e) 390 
K, (f) 413 K, (g) 435 K, (h) 457 K, (i) 480 K, (j) 502 K, (k) 

524 K, (1) 546 K and (m) 569 K. 

Fig. 9. Temperature and velocity fields at the time instant 
t = 4 s : (a) 301 K, (b) 323 K, (c) 346 K, (d) 368 K, (e) 390 
K, (f) 413 K, (g) 435 K, (h) 457 K, (i) 480 K, (j) 502 K, (k) 

524 K, (1) 546 K and (m) 569 K. 

was positioned below, with its bot tom kept at a tem- 
perature of 580 K and a linear temperature dis- 
tr ibution from 580 to 290 K maintained on its wall, 
whereas all surfaces of a broader cylinder were held 
at 290 K. The initial pressure of argon was 0.5 MPa. 
Figures 3 and 4 show time dependencies for po(t) and 
for the total kinetic energy of the gas. The character 
of the dependences clearly indicates that, in the con- 
ditions considered, a periodic gas motion with a per- 
iod close to 1 s is established. Figures 5-9 give tem- 
perature and velocity fields at various time instants 
within one period. It  is evident from the figures that 
the flow character is determined by a periodic pen- 
etration of the cold gas into the region of the working 
cell, its heating, and a subsequent ejection into the 
cold region. Comparing Figs. 5 and 9 reveals that the 
flows at these time instants are actually identical. 
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